BUREAU OF MERIT RECRUITMENT AND SELECTION

SCORE ANALYSIS for RATED EXAMS

Table of Contents

Copy Export of Rater Scores into Score Analysis Spreadsheet: 2
Saving the Export File to the Desktop: 3
Import the Score Export File into the Score Analysis Spreadsheet: 5
Verifying and Adjusting the Set Up: 6
Initiate the Score Analysis: 8
Analyzing the Results: 8
Passing Point Reliability [PassingPointRel] tab 9
Determining whether the Passing Point needs to be adjusted or lowered: 9
Correlations tab 10
Descriptive Statistics [DescStats] tab 11
Adverse Impact [PPAdvImt] tab 12
Consensus tab 13
Approval tab 14
Required Documentation For The Recruitment File: 15
OSER Procedures Performed (applies to Non-Delegated Agencies only): 15

This spreadsheet currently handles up to 10 applicants, but can be adjusted for up to 200 After you're sure that the numbers of questions and raters are correct, click on the "Expan button to adjust the spreadsheet for the number of applicants.

If you need to send this file via e-mail, click on the "Compress" button before send

If you want to skip one or more initial questions, enter the number of columns to skip he

Cells that have a red trianale in the unner riaht corner have a pop-up comment attacher
14 1 + M SetUp RawScores Approval DescStats Correlations PPAdvImt/ PassingPointRel Consensus M

1. When the export file opens, use these keys in this order:

Ctrl-A to select all of the information
Ctrl-C to copy the information
2. Open the Score Analysis Spreadsheet saved on the computer.

To "paste" the copied score export data into the spreadsheet select [Cancel]

Note: If you don't see the tabs at the bottom of the spreadsheet, expand the spreadsheet by clicking on box symbol in the upper right corner of the viewing window to fill the screen.

4. Select the [Raw Scores] tab on the analysis spreadsheet.
5. Highlight cell A1 (if not already), paste the copied information from the Rater Export file into the [RawScores] tab by using Ctrl-V.

Go to section Verifying and Adjusting the Set Up:

Saving the Export File to the Desktop:

Note: Open the Score Analysis Spreadsheet only after the export file has been saved to the computer.

1. At the File Download prompt, click on [Save]. Save the export file to the desktop or a folder on the computer where it can be accessed to import into the Score Analysis Spreadsheet.

2. Open Score Analysis Spreadsheet. If this appears at the top of the screen, click on [Enable Content] in order to continue.

3. Click on the export file saved on the desktop, then click on [Import]. This will automatically load the exam score information into the spreadsheet.

3. Exam specific information will appear at the top of the Set Up tab.

1. Click on the [Set Up] Tab.

2. Review the following fields to make any necessary adjustments:

Scale Max: the highest possible score per question = $\underline{9}$

- This number should match the max \# found in the Exam Score Criteria per question.

Questions: the total \# of items/questions in the exam (see top yellow header on right e.g. Item \#3)

- This number should match the \# of questions on the [RawScores] tab.
- If different, the data may need to be pasted again into cell A1 of the [RawScores] tab OR if the data looks fine, just enter the correct \# of questions.

Raters: the total \# of raters used to score the exam; most times is = 3 (see top header, there are 3 columns for Item \#2) A minimum of 2 raters is required by statue, however, there can more than 3 raters used in certain situations)

- This number should match the \# of raters on the [RawScores] tab
- If different, enter the correct \# of raters
- If an OIQ, \# of raters = 1

Raw scores arranged by:

- The default is set as "Questions" if using Rater Export file to populate this spreadsheet. The other choice is by "Raters"

Optional: number of columns to skip - if the exam combines Non-Rated with Rated questions (i.e., Minimum Requirements with narrative responses) determine the \# of non-rated questions (at the beginning of the exam); this is the \# of columns to skip when performing the score analysis

3. Review the setup and/or the Exam Plan Checklist for exact details about the following variables.

Weight: If all questions are weighted equally, this = 1
If not, adjust based on the weight score criteria (must be adjusted for each rater per question).
Mandatory: auto populates to N for "No"
Enter " Y " for Yes if a passing score is required on a question in order to pass the exam.
Inactive Rater: auto populates to N or "No"
Enter " Y " for Yes, if it has been determined that a rater's scores should not count.
The following fields are populated by the loaded or adjusted data and usually do not require any further adjustment:

Raw Max: the raw score maximum for each question. The top header (in yellow) has 9 columns with data. This is because the spreadsheet is expecting a raw max score (as well as other data) for each rater on each question. Since there are 3 questions and 3 raters, there are 9 columns $(3 \times 3=9)$. This data will auto populate for the 0-9 point scale with a passing point of 4 , but can be typed over if it needs to be adjusted.

Raw Passing: Raw passing point per question, auto populates as 4.
wtd Max: This is the weighted maximum for each question. It will auto calculate based on what is entered in the Raw Max and Weight cells.
wtd Passing: This is the weighted passing point for each question. It will auto calculate based on what is entered in for the Raw Passing and Weight cells.

Rater: the rater \#, it auto populates based on the number of raters entered in the top section.
Question: the question \#, it auto populates based on the number of questions entered in the top section.

Click [Expand], once this is done the screen will flash because the macros are running to perform the calculations.

Analyzing the Results:

Before reviewing the analysis check to make sure the data loaded correctly into the Score Analysis Spreadsheet.

1. Randomly select an applicant on the Rater Export file (sorting the data by CSS to make it easier to compare with The Score Analysis Spreadsheet)

- Look at their CSS \# and compare it to the CS \# on the Score Analysis Spreadsheet.
- If the \#s do not match or if the highest \# in the CS column is greater than 100, the [SetUp] tab information is incorrect or the data was pasted incorrectly into the spreadsheet.
- Re-verify the \# of Raters and Questions for the exam. Go to section Verifying and Adjusting . . .

2. If the Rater Export file is blank, the exam needs to be sent through the queue to be scored to begin the process. Go to section Score the Exam . . .
3. If more than one scoring criteria, be sure to choose the correct one from the dropdown box for the classification/position being scored.

	Passing Point Reliability Calculations				Values of x indicate missing raters											
	Coefficient of Consensus $=$	0.861														
	Adjust Passing Point Here ->	16			Fail	\square	Ra	ers						sti		
rank	Name (sex, ethnic, handicap)	Rank	CS	Raw	Mand	12	3×4	5	6	7	8	1	2	3	4	5
1	$\times \times x \times x \times x \times x$ (M5)	1	81.33	23.556	1	$\times 24$	29					17	23	24	29	
2	$x \times x x x x x x(\mathrm{M} 4)$	2	69.00	15.333	-	4	21					10	11	12	13	
3	x $x \times x x x x x x$ (M2)	3	66.00	13.330		1411	15					10	11	9	10	
4	$x{ }^{\text {a }} \times x x x x x x$ (M5)	4	63.50	11.667		$9 \quad 13$	13					12	11	7	5	
5	$x \times x \times x \times x \times x$ (F5)	5	60.00	9.333		$6 \quad 11$	11					8	6	6	8	
6	$x \times x \times x x x x \times$ (F3)	6	58.00	8.000	,	48	12					6	6	6	6	
7	$x \times x \times x x x x \times$ (F1)	6	58.00	8.000		48	12					6	6	6	6	
8						-	,									

Coefficient of Consensus (aka the reliability of the passing point)

- This is the rate of agreement on pass/fail decisions across all raters and applicants. In this example, there are 3 raters and 7 applicants.

Looking at the Raters section above:

- Only two of three raters rated applicant \#1, because Rater 1 has an X in that column.
- Both rater scores for applicant \#1 are at or above the passing point of 16 , therefore they "agreed" on this question.
- Rater 1 failed applicant \#2, the 4 is highlighted because it is below the passing point of 16.
- Raters 2 \& 3 passed applicant \#2, so the raters "disagreed" on this candidate.
- All raters "agreed" that applicants 3 thru 7 failed, so there is agreement on 6 out of the 7 applicants. There was only disagreement on one - applicant \# 2. The Coefficient of Consensus equals 6/7, or 86 .

Evaluating the Coefficient of Consensus \#:

- $.90+=$ very good
- . $75-.90=$ OK
- . $50-.75=$ barely acceptable

Below 50 indicates severe issues with the rating process; rater orientation needs improvement to gain better clarity on benchmark application or benchmarks need to be more clear.

Determining whether the Passing Point needs to be adjusted or lowered:

1. In the Raters section look for areas where applicants were passed by the majority of raters usually 2 out of 3 raters (white = passing score / teal = failing score).
2. If this happens, the Raw score for an applicant can potentially fall below the passing point noted in the yellow highlighted area (see applicant \#2).
3. To adjust the Passing Point, change the yellow highlighted \# to the Raw score \# of the applicant that was passed by the majority of raters. Ex. Applicant \#2 has a Raw score \# of 15.333 so the new adjusted passing point would be 15.3 (only use 1 decimal place when adjusting the passing point).
4. With the new adjusted passing point entered the applicant's CS should now be 70 or above and the teal areas will have changed in the CS column reflecting the new passing point.
5. If the Passing Point is adjusted in the Score Analysis Spreadsheet then it also needs to be adjusted in the system as well.

Passing Point Reliability Calculations						Values of x indicate missing raters												
	Coefficient of Consensus $=$	0.71																
	Adjust Passing Point Here ->	15.3			Fail	Raters								Questions				
rank	Name (sex, ethnic, handicap)	Rank	Cs	Raw	Mand	1	2	3	4	5	6	7	8	1	2	3	4	5
	xxxxxxxx (M5)	1	80.19	22.333			24	29						13	17	18	19	
	xxxxxxxx (M4)	2	70.05	15.333			21	21	,					10	11	12	13	
	xxxxxxxx (M2)	3	67.15	13.333		14	11	15						10	11	9	10	
	xxxxxxxx (M5)	4	64.73	11.667		9	13	13						12	11	7	5	
	xxxxxxxx (F5)	5	61.35	9.333		6	11	11						8	6	6	8	
	xxxxxxxx (F3)	6	59.42	8.000		4	8	12						6	6	6	6	
	xxxxxxxx (F1)	6	59.42	8.000		4	8	12						6	6	6	6	

Corrected \mathbf{r} - This number corrects the Average \mathbf{r} statistic to account for the total number of measurements. This is done because the average r is based only on one rater, since we have 3 raters (3 measurements) this needs to be taken in to account. To do this, the Spearman Brown prophecy formula is used.

- MUST BE ABOVE .70, - if below, OSER will NOT approve, indicates major problems

Inter-rater/Inter-question Correlations - This displays the Pearson r correlation between one rater's total scores on a given question against another rater's total scores on another question. This is very useful information in determining where error levels may be attributed to in the scoring process (benchmarks, raters, etc.).

In the example above:

- Ideally the \mathbf{r} within a question among raters (\#'s highlighted yellow) is higher on average than the rest of the colors. The practical meaning of this is that items that are meant to be related (scores assigned on the same question) have a higher correlation than items that are not meant to be closely related (scores assigned on different questions).
- The Intra-rater/Inter-question correlations for Rater 1 (\#'s highlighted red) are very high (.941, .822, .826). This could potentially be attributed to the halo or horns effect.

This spreadsheet utilizes correlations to calculate reliability, rather than R-Alpha. A major point about correlations is that they depend upon independent ratings. If ratings are not independent, this info is meaningless. Another difference is that R-Alpha is a lower bound estimate (meaning the R-Alpha tells us the reliability is no lower than that estimate). However, when using R-Alpha, one cannot attribute low levels of reliability to a specific question, but Pearson r correlations helps to do this.

Average \mathbf{r} - this is the average correlation among raters. To get to this number, a z score for each rater is calculated by transforming each of the Pearson r correlations (above these are .690, .737, .687) to a normally distributed z value. These z values are then averaged to get the average $z(.879)$, and the Fisher inverse is taken to get the Average Pearson r correlation (.706).

Inter-Rater Total Correlations - This is the Pearson r correlation when comparing the total rater scores assigned for each applicant by one rater against the total rater scores assigned for each applicant by another rater. In this example, the correlation between Rater 1 and Rater 2 is .690 , the correlation between Rater 1 and Rater 3 is .737, and the correlation between Rater 2 and Rater 3 is 687 . Therefore, the strongest correlation in this example is between Rater 1 and Rater 3, and the weakest correlation is between Rater 2 and Rater 3.

This tab will point out if one rater is always rating high or low.
Under the Weighted Rater-Question Statistics

- Look at Min/Max columns, there should be variation.
- If there were all 6 's for the Max, when the Max could be 9 , look at the benchmarks to see if "ANDs" were used a lot. Example: The applicant needs \qquad experience AND \qquad experience.

Under the Weighted Rater Statistics

- Look at the Mean to make sure these numbers are fairly close.
$\mathbf{N}=$ Number of applicants that received a score for a particular question or rater
Mean = Average Score
SD = Standard Deviation for the particular measurement

NOTE: All sections below are weighted based on information entered into the SetUp tab

Weighted Rater-Question Statistics - This section lists the data broken out by rater and question. For example, if we look at the first row "Item \#1 Question Summary-(1)", we can see that Rater (1) scored 6 candidates on Question 1 (because $\mathrm{N}=6$). The average of the 6 scores was 2.33 , and the standard deviation was 1.75 . The minimum score that rater (1) assigned on Question 1 was $1(\mathrm{Min}=1)$ and the maximum score they assigned was 5 ($\mathrm{Max}=5$).

Weighted Rater Statistics - This section sums up the scores for each Rater across all questions. We can see from this example that Rater 1 scored 6 candidates $(\mathrm{N}=6)$, the average of their scores was 6.83 , and their standard deviation was 4.02 . The lowest total score they assigned for a candidate was 4 (Min=4), and the highest total score they assigned was 14 ($\operatorname{Max}=14$).

Weighted Question Statistics - This section sums up the data for each question on the exam. In this example, we can see that overall, 7 applicants were scored on question $1(N=7)$, the average score was 9.79 , the lowest score on Question 1 when combining all raters scores was 6 , and the highest score on Question 1 when combining all raters was 17.

Adverse Impact [PPAdvImt] tab - (required documentation for recruitment file)

Adverse Impact Analysis for
Title

Passing Point Impact Analysis for Minorities					Score Stats	
Ethnic Code	Pass	\%	Fail	\%	Average	SD
1	\square	0.00\%	1	100.00\%	8.000	
2	\square	0.00%	1	100.00\%	13.333	
3	\square	0.00%	1	100.00\%	8.000	
4	\square	0.00%	1	100.00\%	15.333	
5	1	33.33\%	2	66.67%	14.852	7.627
9	\square		\square			
Total	1	14.29\%	6	85.71\%	12.746	5.5037
All Minorities	\square	0.00\%	4	100.00\%	12.746	5.504
B0\% Rule	26.67\%					

Probability that the difference between Minority \& White (5) score averages is due to chance $=0.70$

Passing Point Impact Analysis for Females					Score Stats	
Gender	Pass	\%	Fail	\%	Average	SD
M	1	25.00\%	3	75.00\%	15.972	5.273
F	\square	0.00%	3	100.00\%	8.444	0.770
U	\square		\square			
Total	1	14.29\%	6	85.71\%	12.746	5.5037
80\% Rule	20.00\%					

Probability that the difference between Male \& Female score averages is due to chance $=0.06$

Note: The passing point is never adjusted based on the Adverse Impact Analysis due to the generally small sample size of applicants for most recruitments. The analysis can assist with the development of future diversity recruitment goals.

This tab breaks down the number of applicants who pass or fail in each Race/Ethnic category, as well as each Gender category.

Race/Ethnicity Categories: 1 - Black (not Hispanic) 4-Hispanic
2 - Asian or Pacific Islander 5 - White (not Hispanic)
3 - American Indian/Alaska Native 9 - Unknown
The All Minorities row sums up all the different minority categories, and then displays the percentage of applicants that Pass and the percentage that Fail.

The 80% Rule ($4 / 5$ Rule) box is displayed a little differently. This actually displays the percentage of the minority group that would need to pass in order for the passing rate to be at least 80% of the majority group. From the ethnicity example above, the passing rate of White applicants is $1 / 3$ or 33.33%. Therefore, the 80% rule is $.3333 \times .8$, or 26.67\%.

The "Probability that the difference between . . . is due to chance" info is the significance test. . If the \# is below .05 there is statistical significance of adverse impact. Note: This text only appears when there are at least two scored applicants in the minority group (ethnicity or gender).

In the Passing Point Analysis for Females section, the 3 gender options are M-Male, F-Female, and U-Unknown. In the example, the passing rate for females needs to be 20% in order to be at least 80% of the male passing rate (25\%). Since it is less than 20\%, "Adverse Impact for Females" will display on our approval tab.

Note: This tab is only functional when using MS Office 2007 or newer

Title									
Test Title: Exam Total									
Announced on 12/14/2009									
Rater Category Consensus by Question									
Question	1	2	3	4	5	6	7	8	Average
Passing Point Consensus	0.57	0.43	0.57	0.71					0.57
Overall Category Consensus	0.57	0.43	0.57	0.57					0.54

This tab shows further analysis of the examination results including:
Passing Point Consensus - for each question and the average as opposed to the overall exam passing point consensus which was reviewed previously on the Passing Point Reliability tab (also known as the coefficient of consensus)

Overall Category Consensus - for each exam benchmark category and the average (i.e. More Than Acceptable, Acceptable, Less Than Acceptable).

In the example above:

- Passing Point Consensus - Q4 has the best rate of . 71 (71\%) when compared to the other questions. Q2 has a low rate of .43 which means only 43% of the time the raters were in agreement on whether an applicant receives a passing score on this question. This helps to identify which questions caused the greatest rater disagreement.
- Overall Category Consensus - Q1, Q3 and Q4 all have a rate of . 57 (57%) which is low. This means only 57% of the time the raters agreed on the benchmark category to score applicant responses. The ideal result would be that this rate (\%) were high because this would mean the raters at a minimum agreed on whether an applicant response was considered in the More Than Acceptable, Acceptable or Less Than Acceptable benchmark category. If the benchmarks are very clear and easily applied this rate will be higher.

Total Candidates - The total number of applicants from the rater score export file (applicants that have applied - not necessarily the same \# that have completed the exam)

Scored Candidates - Only counts applicants with scores entered (does not count applicants that do not have scores entered because they had blank responses to the exam questions).

Adverse impact for Minorities (or Females) - will only appear when detected

At a minimum fill in these lines:
Exam Type: T\&E (rated exam)
Analyst Name: the Agency HR Staffing Analyst
Passing point consensus: example $=.71$
Cert Rule: transfer from Exam Plan Checklist

Use the blanks of the Approval page to document factors relating to adjusting the passing point:

Previous administration: If the same test was given in the past year or so, consider if you should be using the same passing point so that the current group of applicants is evaluated consistently with the previous one. This is particularly important if some of the applicants applied for both recruitments and used the same answers.

Planned administrations: If this test will be given again in the near future and the current group of applicants is too limited to make a fully informed passing point decision, you may want to make an adjustment.

Need for candidates \& Labor Market Factors: If labor market conditions are such that the level of qualification within your applicant pool is too small for the number of vacancies and the risk associated with lowering the passing point is minimal, you may want to make a downward adjustment to pass more applicants.

AA Considerations: If the job is underutilized, the test has adverse impact and the risk associated with lowering the passing point is minimal, you may want to make a downward adjustment to pass more protected group applicants.
*** This option should not be the sole basis for lowering the passing point ***
Passing point consensus: Often you will find some disagreement among your raters as to which candidates should pass. Consider adjusting the passing point downwards to the score of the applicant that has a majority of the raters giving a passing score.

SME judgments: If your raters indicate that the benchmarks were unrealistically strict, you may want to adjust the passing point downward. This can be done with your SME's approval either for one or more questions on the Setup tab or globally on the Passing Point Reliability tab.

Comments: Note passing point decisions and any other adjustments made to the recruitment/scoring.
Examples: - "No need to adjust passing point"

- "Adjusted passing point due to 2 out of 3 rater agreement"
- "Removed mandatory due to inconsistent ratings"

Non-Delegated Agencies - contact DPM to perform and approve the score analysis then file the documents below
Delegated Agencies - follow the instructions to perform the score analysis then...

1. Print these tabs of the Score Analysis Spreadsheet

- Approval tab - can use quick print, if delegated follow internal procedure to approve score analysis and use the signature lines at the bottom
- PassingPointRel tab - define the print area including all rows/columns before printing this tab
- PPAdvlmt tab - can use quick print

2. File all scoring related documents in the recruitment folder

- Include the completed Exam Security Agreement/Job Expert Certificates

OSER Procedures Performed (applies to Non-Delegated Agencies only):

1. Generate the score analysis
2. Review analysis to determine whether the exam results are acceptable

- Passing Point Consensus = .5+ (prefer .75+)
- Pinpoint any issues with raters, questions and/or benchmarks
- Adjust/lower passing point because of 2 out of 3 rater agreement

4. Print the tabs in step 1 above

- Sign Approval page on the lower left signature line

3. Have a BMRS Senior/Advanced Analyst review analysis findings

- Consult with the BMRS Administrator as needed
- Passing Point Consensus below . 5
- Rater inconsistencies
- Use of different raters

4. Analysts determine appropriate action

- Approve
- Adjust/lower Passing Point
- Adjust exam passing point in the system
- Re-score the exam
- Other

5. Obtain Approval Signature from Senior/Advanced Analyst
6. Scan and email the score analysis documents to the Agency HR Staffing Analyst (retain in recruitment folder)

- Approval tab
- PassingPointRel tab
- PPAdvlmt tab

7. Review recruitment folder contents and arrange according to folder checklist

- Print anything that might be missing (e.g. ERS announcement, final job anno or exam, etc.)
- Complete the Recruitment Checklist
- Check off the folder checklist
- Place the recruitment folder into the basket in the top file cabinet located at the end (closest to the main aisle) of the recruitment folder file cabinets by classification
- ESC team will label the folder, noting retention dates and will file it back with current recruitment folder records

